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Covariance matrix forecasts of financial assetrretiare an important component of current pragticénancial
risk management [4]. Modelling of the second momeftasset returns has been a major field of situdiypance over the
last 20 years [1]. Forecasts of volatilities and-elations are of crucial importance in risk managat [2].

The goals of this paper are the following: i) tabme different methods that can be used for camag matrix
forecasting and ii) to present the results of apignal research performed using real FX data.

In order to understand main techniques of covagamatrix forecasting let’'s reduce the problem toiarece
forecasting techniques. One of the main notiongl uiseforecasting is return during one day. Contuslp compounded
return during day i is defined as (equations bedogtaken from [3]):
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where:

S is the value of the market variable at the endaofi;

S.1 is the value of the market variable at the endayfi-1.

For the purposes of calculating Value at Risk,afe rate is given by:
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Equation above gives equal weight to &lsuBecause the recent data is more importans, &ppropriate to give
more weight to recent data. A model that doesishis
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wereg; is the amount of weight given to the observatidays ago. Alb’s are positive and the weights must sum to unity.
If to assume that there is a long-run average Nityat' given weighty, the model becomes:
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This is known as ARCH (m) model, first suggestedHmngle (1982). The estimate of the variance is dasea
long-run average variance and m observations.
If the weights pdecrease exponentially as we move back through, tive have the exponentially moving average
model (EWMA):
o%h=A0%-1+ (1— ﬁ)uzn—l
where:
A is a constant between zero and one.
It is worth to note that JP Morgan uses the EMWdéded withA=0.94 for updating daily volatility estimates is it
RiskMetrics database.
Bollerslev in 1986 proposed the GARCH (1,1) motled, equation for which is:
% = ]/V +aU2n—1+ﬂ02n—1
where g is the weight assigned to/js the weight assigned tén_q, andp is the weight assigned t(z)n_§. Weights must
sum to unity.
Now the question arises which model to choose?dntjze, variance exhibits mean reversion.
It may be showed that the GARCH (1,1) model incoapes mean-reversion whereas the EWMA model does no
So from the theoretical point of view GARCH (1,1ishbe used where possible.

Covariances between two variables can be updatedsimilar way to variance estimates. Covariandenese
between U and V is:
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An EWMA model for updating the covariance estimate
cov,=Acov,_;+ @L—A)U,_V,_,



And similarly, the GARCH (1,1) model for updatingavariance is:
cov,=w+al,_V,_,+ fcov,_,
Statistical loss functions are used for evaluatiboovariances forecasts. Most popular functiothés root mean
squared error (RMSE), which is given by [1]:
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The smaller the quantity the better the forecast.

Daily closing prices on 6 major USD foreign exchem@gAUD, CAD, CHF, EUR, GBP, JPY) from 23-Mar-00 to
8-Jul-02 were used for variance and covarianceixnfairecasting.

First of all | tried to determine the time periddht produces most accurate forecasting resultse Fenies of daily
closing process of USD/AUD rates were used forararé forecasting using the EWMA model. The resarkspresented in
Table 1.

Table 1. RMSE (*18) for USD/AUD

Days 30 60 90 12(¢ 150 180 210 25(
Result 27,73 17,94 15,77 15{58 15,41 14,13 147,02 150,04

As it can be seen, the most accuarate forecastwlaa 180 days period is used. This result is dsgtier for
covariance matric forecasting. Results showedftratasts and actual covariances matrixes fit ¢ @dher rather well.

The following conclusions can be made:

1) Covariance matrix forecasting is a very impariasue in up-to-date risk management practice;

2) a great variaty of models for covariance mafaocecasting is available for risk manager startingm
exponentialy weighted moving average model to weriextensions of GARCH models;

3) it can be proved that GARCH (1,1) model incogtes mean-reversion while EWMA does not, so from th
theoretical point of view GARCH (1,1) must be useste possible;

4) using daily closing prices on 6 major USD foreigxchanges the performance of EWMA model was deste
Results showed that must accurate forecasts are wige period of 180 days is used and that using tilie interval
covariance matrix forecasts are accurate enough.
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KOVARIACIJU MATRICOS PROGNOZAVIMAS
Santrauka

Kovariaciy matrizos prognozavimas yra labia svarbus rizikadwmo praktikoje.

Siame pranedime yra pateikiami pagrindiniai kowapiamatricai prognozuoti naudojami modeliai bei atiigtas
eksponentisSkai pasverto judémvidurkio modelio testavimas naudojant §gsagrindini; uzsienio valiug kursus.

Kovariacijy matricai prognozuoti galima taikyti daug modelipradedant eksponentinio svertinio jutian
vidurkio modeliu ir baigianivairiomis GARH modelio modeifikacijomis.

Pastebta, kad GARCH (1,1) modelis apima savyje finanskoms ldinga savyle — sugizima prie vidurkio, o
EWMA modelis — ne. Taigi, i$ teors pusgs labiau reikty taikyti GARCH (1,1) model

PraneSime taip pat pateikiami EWMA modelio testavirezultatai, kurie rodo, kad tiksliausios progioz
gaunamos, kai naudojamas 180 digmognozavimo periodas ir kad, naudojainp&riodi, kovariacijp matricos prognas
yra pakankamai tikslios.



